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Circumstances under which a quenched system will "freeze" in a metastable 
state are studied in simple systems with long-range order. The model used is the 
time-dependent pair approximation, based on the most probable path (MPP) 
method. The time dependence of the solution is shown by means of flow 
diagrams. The fixed points and other features of the differential equations in 
time are independent of the choice of the rate constants. It is explained 
qualitatively how the system behaves under varying descending temperatures: 
the role of the initial conditions, the dependence on the quenching rate, and the 
response to precooling. 

KEY WORDS: Supercooling; quenching; metastable equilibrium; order 
parameter; frozen-in states; system far from equilibrium. 

1. I N T R O D U C T I O N  

In o rde r  to s tudy the ques t ion  of  when and  how a system will freeze in a 
metas tab le  state under  the influence of  r ap id  cool ing,  we s tudy  a s imple 
system with long- range  order.  Ra the r  than  rely on a single o rde r  p a r a m e t e r  
and  a f luctuat ing term, we in t roduce  a dynamic  equa t ion  for long-  and  
shor t - range  order ,  This  enables  the system to move  "pe rpend icu la r "  (i.e., in 
the sense of the uns tab le  coo rd ina t e  d i rec t ion  of  a saddle  po in t )  to the 
long- range  o rde r  p a r a m e t e r  and  leads to the poss ib i l i ty  of  an  escape from a 
seemingly t r apped  state. The  fixed po in ts  of  the resul t ing equa t ions  
represent  the stable,  metas table ,  and  uns tab le  points .  The  flow d i a g r a m  at 
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fixed temperature and field indicates how a system should be quenched in 
order to become trapped into a metastable state. 

First we describe the simplest possible model that leads to a frozen-in 
state. Then we generalize to (a) a system far from equilibrium, and (b) the 
influence of more than one order parameter. 

We show that the dynamics of such a system cannot be described by 
the free energy as a function of the long-range order parameter and that 
the unstable state is actually a saddle point in a two-dimensional phase 
space with the long-range order and the short-range order as coordinates. 

2. GENERAL C O N S I D E R A T I O N S  FOR S Y S T E M S  W I T H  
ONE O R D E R  P A R A M E T E R  

To obtain a simple picture of frozen-in systems we consider the follow- 
ing model. The state of any cooperative system can be characterized by a 
long-range order parameter n. This parameter depends on the temperature 
and is nonzero below the ordering temperature. At T =  0 the order achieves 
its maximum value, that is, n = 1. We assume that if the system is not in 
equilibrium, it will return to equilibrium by means of a thermodynamic 
driving force proportional to the deviation. The equation of motion will be 
of the form 

dn 
(1) 

where ~ is the equilibrium value. The rate constant k is usually taken 
proportional to the second derivative of the free energy with respect to n 
evaluated at n = ~: 

k = M  (2) 
h, 

This rate constant is in general a function of the temperature. Equations 
(1) and (2) have found widespread applications. (1-3) 

In most applications, cooling takes place at a constant rate. In general, 
the system is in a nonequilibrium state because its temperature is time 
dependent, T(t), and the system is not always able to adapt itself to the 
new situation. Consequently, we have k(T(t))=k(t) as well as 
~(T(t))=~(t), that is, both the rate of return to equilibrium and the 
equilibrium value of the order parameter change with time. 

For  a given cooling rate R, 

T =  To(1 -- Rt) (3) 

one can estimate at what moment the system freezes in. Here T O is the tem- 
perature at t = 0. Let us assume that cooling is done by lowering the tern- 
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perature stepwise A T  at every At seconds. In each step the system has an 
order parameter  n', which lies below the equilibrium value n at the same 
temperature. The system will now relax toward equilibrium in a "vertical" 
way, and it will take approximately k -1 seconds to reach this equilibrium. 
The next temperature decrease takes place after R 1 seconds; hence, if 
k - l < . R  -1 the system will be able to follow the equilibrium values of ~(t), 
but as soon as k > R, the system will lag further behind. An example of 
such behavior is given in the work of Sato and Kikuchi (4) (see Fig. 1). In 
this example we see how the order parameter  reaches a constant value. The 
value of n is almost equal to the value of n at the temperature where the 
system "froze," that is, the temperature at which k ~ R. 

In this qualitative picture we have assumed that n(t) is a smooth 
function; however, this need not be. Also, we have assumed that the rate 
constant k is decreasing with decreasing temperature and this is not 
necessarily the case either: near the critical temperature the rate constant 
may decrease with increasing temperature, the so-called critical slowdown. 
Furthermore,  and this is of pr imary interest to us, the situation may be 
altered by the fact that the system has more than one order parameter. To 
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Fig. 1. Calculated temperature dependence of the long-range order parameter for a system 
cooled (and heated) at a constant temperature rate (from Ref. 4). n is the long-range order 
parameter. 
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give a more precise description of the simple, one-parameter process, we 
write 

dn/dt = -k( t )[n  - ~(t)] (4) 

This is solved by 

n( t )=exp[ -K( t ) ]  {f~ dt' k(t') ~(t')exp[K(t')-l + no} (5) 

where 

K(t)= k(t') dt' 

The function K(t) can be considered as a dimensionless time scale 
which transforms Eq. (4) into 

dn/ dK= n - 7t( K) (6) 

provided the function K(t) can be inverted. This dimensionless time comes 
to a standstill when the relaxation rate is much smaller than the cooling 
rate.(S) 

To estimate the value of the frozen-in order parameter at very low 
temperatures, we make the following simplifying assumptions: (1) Let n(T) 
be independent of the temperature; consequently, it does not depend on the 
time either. (2) We assume a hypothetical temperature dependence of k to 
be k = A T, so that the rate is zero at T =  0; A is a constant. The solution of 
(4) with the cooling given by (3) is 

n(t) = neq q'- (n o - n e q  ) exp[ -ATo(1  - �89 (7) 

where no is the value of n at t = 0 and neq is the equilibrium value of n. 
The frozen-in value at T =  0 is given by 

n F = neq q- (no - -  n e q )  exp(--ATo/2R) (8) 

This differs from the equilibrium value simply because at a certain moment 
( t =  1/R) the "time is up." Since the system has reached k = 0  at that 
moment, it cannot relax any further. The result for nf depends on R, as is 
observed in experiments (see Grest and Cohen(6)). In this simple model we 
need to take n oCneq; otherwise nothing happens. If the system is sub- 
sequently heated, it will resume its motion toward neq; Fig. 2 illustrates 
that the path is not reversible. 
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Fig. 2. Illustration of cooling and heating of a system where h is independent of the tem- 
perature. 

This picture is oversimplified: the value of neq is not constant, but is 
given by t~(t), and the deviation from equilibrium (no r neq) comes about 
because the value of n at a previous temperature is not the same as the 
value of r~ at a later moment. The change of the reference value provides 
the driving force in the differential equation. 

The above equations describe the return to equilibrium of systems 
governed by one order parameter and are close to equilibrium. We would 
like to generalize this description to systems that are governed: (a) by two 
or more order parameters and (b) are far from equilibrium. Using Eqs. (1) 
and (2), but without the restriction that n ,~ t~, so that k is a function of n, 
one obtains the generalized form of the rate equation. Solving this equation 
is impossible, but a fairly general description can be given for the case in 
which the free energy is written as a power series in n. In order to be able 
to describe the behaviour of such a system in the presence of a secondary 
minimum, we take the series up to the fourth order in n. Assuming that the 
Taylor series representing the derivative of the free energy is factorized, one 
obtains an equation of motion of the form 

d n / d t  = M 6 F / 6 n  = k l ( n  - n l ) ( n  - n2)(n - n3) (9) 
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with nl<n2<n 3. This corresponds to a maximum at n2 between two 
minima at n I and n3, provided kl > 0. The solution of this equation is given 
in Appendix A, for nl < n2 < n3 and for the case that nl < n2 = n3; the latter 
represents the disappearance of the secondary minimum. 

The conclusion is that the system will relax either toward n~ or toward 
n3, provided k~ r 0. Once the system is on the "wrong side of the fence" it 
will move toward the metastable equilibrium. We want to show that this is 
no longer the case when a short-range order is introduced. 

3. THE E Q U A T I O N S  OF M O T I O N  FOR THE 
PAIR A P P R O X I M A T I O N  

3.1. Describing the Model  

In this section, the order-disorder phenomena with the incorporation 
of a short-range order parameter is described in the notation used by 
Kikuchi/v) The equilibrium solution corresponds to the pair approxima- 
tion, also called the Bethe or quasichemical approximation. 

The motivation for this model is the following. It is generally assumed 
that crystallization is triggered by a local fluctuation. Consequently, the 
main goal is to establish whether a deviation of the short-range order in the 
metastable state could start a motion toward equilibrium. The short-range 
or pair order is the simplest form of correlation that can be introduced to 
accomplish this. The option of more complicated clusters is not introduced 
in the calculation, mainly to keep things as simple as possible. A drawback 
of the model is not the lack of higher correlations, but the fact that the 
short-range order parameter is actually not a local parameter, as its name 
seems to suggest. The short-range order is an average of the local order 
over the whole crystal. It is possible to introduce a truly local short-range 
order, but that is beyond the scope of the present paper. 

Let us consider a spin system and assume that only the relative orien- 
tation of the neighboring spins contributes to the energy. A nearest 
neighbor pair is called a "bond," interchangeable. The spin pairs ( + ,  - ) or 
( - ,  + ) are antiparallel spins and contribute an energy + aT, and the spin 
pairs ( + ,  + )  or ( , ) are parallel spins and contribute an energy - J .  
We assume J to be positive. 

We choose for internal variables those that express the fraction of each 
kind of nearest neighbor pairs. The meaning of the pair variables Yi is as 
follows/7) If the number of pairs in a system is Np, the number of ( + ,  + ) 
bonds in the system is ylNp, the number of ( + ,  - )  bonds yzNp, and the 
number of ( , ) bonds y3Np. In the second case there is a degeneracy 
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g = 2, which indicates the number of different configurations having the 
same probability. The y~ are normalized by the equation 

3 

giYi---1; g l = g 3 = l ;  g 2 = 2  (10) 
i = 1  

The fractions of ( + ) spins and ( - ) spins given by x~ and x 2 are called 
the point variables. The x i are normalized by the equation 

xl = yl  + y2; x2 = y2 + y3; xl + x2 = 1 (11) 

The long-range order parameter S and the short-range order parameter Q 
are defined by 

S = x l - x 2 =  Y l -  Y3 (12) 

Q =  y l - 2 y 2 +  y 3 =  1 - 4 y  2 (13) 

Using (10), (12), and (13), one can determine the bond variables as a 
function of the order parameters, 

Yl =- ~(2S+ Q + 1) 

y 2 = � 8 8  (14) 

y3 =�88 + Q - 2 S )  

Similarly, from Eqs. (11) and (12) the point variables can be written as 

xl  = �89 + s ) ,  x2 = ~(1 - s )  (15) 

To determine the free energy in terms of the pair variables Yi we need 
the internal energy E. The internal energy E can be written 

3 

E =  ~,, gieiYi (16) 
i = 1  

with el = - ( J +  2H), e 2 = J ,  and e3 = - ( J - 2 H ) ,  where H is the magnetic 
field. The number of ways independent pairs can be arranged on the lattice 
is 

[�89 
Wp= [�89189 2 1 T �9 ) [~TY3N]. 

since there are Np = �89 pairs. 7 is the coordination number of the lattice, 
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i.e., the number of nearest neighbors. The number of ways the sites can be 
arranged is 

N~ 
WxF 

(xl N)! (x2N)! 

This leads to an entropy 

5p 3 2 
- - = I n  W= -�89 ~ giYiln y i - N  ~ x i lnx i  
k i = 1  i = 1  

2 

+ T N ~  x i lnx ;  
i = 1  

(17) 

where the last term is introduced to compensate for the fact that the pair 
contribution contains 7N site contributions. (8) 

Using (16), and (17) with F = E - T O 3 ,  one finds the free energy as 

]~F 7 , , ~  7 ~  q~ -= ~ = ~ p g,.e~ y; + ~ g~ y~ In y~ 
i = l  i = 1  

- ( Y - l )  ~ x~lnx,+/3)~ 1 -  giy~ 
i = l  i = 1  

(18) 

where 2 is introduced to obtain the normalization condition. 

3.2. Solut ion for the System at Equil ibrium 

In Eq. (18) the free energy is given in terms of the internal variables. 
Minimization of (18) with respect to Yi gives 

a~/Oy i = O, i = 1, 2, 3 

which leads to three self-consistent equations: 

~yl='~ "~ln yl--(7--1)lnx~ +fi 2 

~Y2 = 7/~e2 + 7 In Y2 - (7 - 1 )(ln x~ + In x2) + 2/~2 

005 7 / ~ 3 + 7  Oy3 2 -~lny3 ( 7 - 1 ) 1 n x 2 + / 3 2  

(19) 

(20) 
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This gives 
y l e  2Pz/~=e-B~iX2~el 

y2e - 2~./~ = e - ~2(x 1 x2) ~ --= e2 (21) 

Y3 e -  2~4~ = e-~"3(x2)2f -- e 3 

where ~=  (7 - 1)/7. We can find 2 from the partition sum: 

e 2~/~ = el + 2e2 + e3 -= Z (22) 

From (21), Yl, Y2, and Y3 can be computed using either the natural 
iteration method of Kikuchi (9) or the Newton-Raphson method. One of 
the advantages of the natural iteration method is that the free energy 
always decreases as the iteration proceeds, with the consequence that 
iteration always converges to a stable solution. However, if one is 
interested in metastable and unstable solutions, the Newton-Raphson 
method is needed, since the natural iteration method is only capable of 
"homing-in" on stable solutions. After determining the y~ the order 
parameters S and Q are calculated using Eq. (12) and (13). For  later use 
we express Eqs. (21) and (22) in the form S =  S(S) and Q = Q(S), where 
the functions S and Q are given by 

sinh(2/CH + h) 
S -  e x p ( - 2 f l J )  + cosh(2f iH+ h) (23a) 

2 
Q = 1 - 1 + exp(Z/~J) cosh(2f lH+ h) (23b) 

with h = ~ ln[(1 + S)/(1 - S)].  
Since the argument Q does not appear in the equations, only the first 

condition, S =  S, is a self-consistency equation; the second expression, 
Q = 0,  merely determines the value of Q that follows. The first equation 
has either one or three roots and consequentely the second leads to the 
same number of options for Q. Figure 3a shows S and Q versus T for H = 0 
and 7 = 8 (a bcc lattice). We show S and Q versus T for H = 0.005, 0.01, 
and 0.1 in Fig. 3b. In all cases the stable, metastable, and unstable solutions 
are plotted. The distinction between these three types of states can be most 
easily seen by constructing a contour map of the free energy (see Ref. 10). 

3.3. System Far f rom Equi l ibr ium 

In order to construct a possible set of dynamic equations, we use the 
most probable path (MPP)  method of Kikuchi. (m In this method the rate 
change of the internal variables is given by 

dyj/dt= Z (Y~j- Yj;) (24) 
i # j  

822/45/1-2-15 
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Fig. 3. (a) Long-range order parameter S (heavy lines) and short-range order parameter Q 
(thin lines) for the stable (subscript 1), the unstable (subscript2), and the metastable 
(subscript 3) states for H = 0  ( J=  1). (b) The same for three different nonzero fields: (--) 
H=0,005, ( - - )  H=0.01, and ( . - )  H=0.1. 
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where Yo is the path probability rate for the system to go from state i to j. 
The coefficients Yu are the product of the three factors: k,7, the rate con- 
stant; a temperature-dependent factor which guarantees that the 
equilibrium state is the time-independent state; and a third factor, which is 
the probability that the system is in the state i, e.g., yi. Detailed balancing 
requires that 

Y~ = Yji (all i, j)  (25) 

Following the method of Kikuchi, we can either make the assumption 
that the temperature-dependent factor is given by the exponential of fl/2 
times the energy increase in the transition (called recipe I in Ref. 1 !) or fl 
times the total energy of activation (recipe II). Our formulas are based on 
the second choice. Some of the numerical work was done with both 
options, however. The resulting expression is 

Y• = koejyi (26) 

where ej is given by the identities of Eq. (21). It seems arbitrary to include 
or not to include (as is done here) the partition function as a denominator, 
but this only changes the time scale and consequently has no influence on 
the shape of the flow lines. There also may be an intrinsic temperature 
dependence in the rate constants. This will be of importance in cooling 
experiments where T is time dependent, but this was not introduced in our 
description. 

The possible transitions are depicted in Fig. 4. We make the following 
assumptions for the rate constant: 

k12 = kel = k l ;  k23 = k32 = k2; k13 =k31 = 0  (k 1 #k2) (27) 

This choice is based on the idea that insertion of a particle is different when 
a neighbor is present than when a neighbor is not present (see Ref. 5). Also, 
we assumed that double processes, the simultaneous insertion or removal 
of two particles, do not take place.(lz'13) 

1 1 2 2 3 3 

0 r 0-------0 0 0 H @ 0 0 0 

Fig. 4. The six possible transitions in the pair approximation. 
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The resulting rate equations for the pair variables are 

dYl /d t  = k l ( e l  Y 2  - -  e2 Y l )  

2 dyz/dt=kle2y I +k2ezy3 -k l e l  y2-k2e3Y2 

dy3/dt  = k2(e3 Y2 - e2 Y3) 

(28) 

With Eqs. (12) and (13) the rate equations can be written in the form 

dS/d t  = - a l l ( S -  S )  - a12(Q - Q)  

dQ/  dt = - a 2 1 ( S  - S )  - a 22( Q - Q. ) 
(29) 

where the a's are in general still functions of S and Q. The form (29) is 
advantageous when one is considering the behavior near a fixed point. 

To obtain the rate equation in the form (29) we subtract the 
equilibrium values given by (23) from each pair of terms. For instance, 

el y z - e z y l  = e l ( y 2 -  )72) - -  e z ( Y l  - -  371) (30) 

If one applies the same procedure to all other terms in (28), the rate 
equations are given by 

dS/d t  = - �89 + k2)(S-  S) 

- ~[k~el  + (k l  - k z )e2  - k 2 e 3 ] ( Q  - Q)  (31) 

dQ/dt  = - e 2 ( k  1 - k 2 ) ( S  - S )  

- � 89  + (k l  + k 2 ) e 2 + k 2 e 3 ] ( Q - Q )  (32) 

We will display the results in the form of a flow diagram, 114) which 
consists of a graphical solution of these rate equations in the two-dimen- 
sional phase space of S and Q. One starts with initial values very close to 
the boundary, then, as time progresses (by given small steps) the values of 
S and Q are computed, and the point representing them moves in the 
plane. A set of solution curves is created by considering all different initial 
values. 

The form (29) is somewhat misleading. In order to determine the 
character of the fixed points, we need to evaluate the determinant 
associated with the coefficients of the first-order deviations. Since S is a 
function of S, the determinant is given by 

D = D o  1-~--~ ; D o = ( a H a 2 2 - - a 1 2 a 2 1 ) = - - - - - 2 ( 1 - - Q )  (33) 
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It is the second factor in the first equation that determines the sign, which 
establishes, using the terminology of Ref. 14, whether the fixed point is a 
node or a saddle point. 

Equations (31) and (32) were solved for different values of kl and k 2 

with T=4.5  and H = 0 . 1  (Fig. 5). The coordinates of the fixed points can 
be found from the dash-doted lines in Fig. 3b. 

4. D I S C U S S I O N  OF T H E  S O L U T I O N  

In order to obtain the appropriate reference points that occur in the 
solution of the dynamic equations we discuss first the equilibrium, or 
actually the time-independent, solutions as a function of the temperature 
for zero field (Fig. 3a) and for three values of the magnetic field (Fig. 3b). 
For given nonzero field, there are three solutions for the long-range order 
parameter below a certain temperature. For lack of a better name, we will 
call this the quasicritical temperature T' c (in Fig. 3b, T', = T1 for H = 0.005, 
T2 for H=0.01 ,  and T 3 for H=0.1) .  From the figure we see that two of 
three solutions for S ( T <  T'~) join at T',.. The stable solution St is always 
positive for H > 0. The unstable solution $2 is negative and rather small in 
absolute value at lower temperatures. This solution is of course zero if the 
field is absent. The metastable solution $3 is negative; its absolute value is 
less than $1 at the same temperature. Each branch has its corresponding Q 
values: Qx is similar to the zero-field solution, but this branch has no dis- 
continuity in the derivative; Q2, the unstable solution, lies in the 
neighborhood of the Q2 for H =  0; and Q3, the metastable solution, has 
about the same value as Q1, but terminates at T'c. The curves of $2 and $3 
meet at T'c with a vertical tangent, the same holds for Q2 and Q3. The 
values of T' c in Fig. 4b are labeled TI (corresponding to the H = 0.005 cur- 
ves; solid line); T2 (corresponding to the H=0.01  curves; dashed); and 
T3(the H--0.1 curves; dash-dotted). The value of Q2 goes to one for T 
going to zero. 

To describe the solutions of the dynamic equations we choose a given 
temperature and field and plot the flow diagram in S - Q  space (see Fig. 5). 
The lines in the flow diagram will depend on the choice of the method 
(recipe I versus recipe II) as well as on the values chosen for the rate con- 
stant k. In similar work (~2) we found that the choice of I versus II did not 
change the character of the diagram very much. We use here recipe II. 

In this flow diagram there are three fixed points: one in the upper right 
corner, the stable solution; one in the upper left corner, the metastable 
solution; and one in the lower-middle part of the figure, the so-called 
unstable solution. This last point would be somewhat above the origin if 
the field were zero. The upper left fixed point lies lower than the upper 
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right fixed point since the field was chosen positive. The coordinates of the 
fixed points in this diagram are: $1=0.95, Q1=0.90; $ 2 = - 0 . 4 3 ,  
Q2=0.34; and $ 3 = - 0 . 8 2 ,  Q3=0.70. The position of these points is 
independent of the choice of the values of the rate constants since they do 
not enter the self-consistency equations (23). Also, the character of the 
fixed points is independent of the rate constants, since the sign of the deter- 
minant remains the same when the k's are modified. The unstable fixed 
point is avoided by the flow lines. Inserting the coordinates in Eq. (33) 
gives D < 0; hence this is indeed a saddle point. If we imagine a circle 
around it, all points on a 180 ~ sector on the left lead to the metastable 
fixed point and all points on a 180 ~ sector on the right lead to the stable 
fixed point. The orientation of the separation depends on the value of k, 
the ratio of the rate constants. 

It is also clear from the figure that there is a confluence of the flow 
lines and by comparing different values of the ratio k one can see that this 
line of confluence is independent of k. Comparing Eqs. (31) and (32), we 
obtain 

dS f~+kf2 
- - -  ( 3 4 )  

dQ gl + kg2 

where f l  and gl are the terms that do not contain k (=k~/k2) and f2 and 
g2 are the remaining parts. The function is independent of k on the line 

f~/gl = fz/g2 (35) 

This "invariant" depends on the temperature and on the field. All three 
fixed points lie on this invariant line. At higher temperature there is only 
one fixed point on the invariant line, since the unstable point and the 
metastable point eventually merge and disappear. 

In Fig. 5c one sees that, contrary to the one-parameter model, the 
initial value of S < $ 2  will not necessarely relax toward $3 since the 
behavior will depend on the initial value for Q. The diagram shows that for 
Q above the confluent line, the system will relax toward the stable state. 

For the sake of completeness we mention earlier and different treat- 
ments of this problem, by Meijer and Edwards, ~3) using a four-state 
master equation (in this paper all six rate constants are equal), Geschwend 
eta/. O4) on vacancies in alloys, and van Baal, ~15~ who describes the same 
problem by a slightly different method. 

Finally, we suggest the following scenario for a time-dependent tem- 
perature: If quenching is done rapidly, that is, at a rate larger than the 
largest of the two rate constants, the system still finds itself in the positive 
quadrant of the two-dimensional phase space. At the final temperature it 
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may lie on one of the flow lines that descend to the left (see Fig. 5b) and 
reach the metastable state, and hence becomes frozen-in in the non- 
equilibrium state. This is actually a well-known case in rapid solidification 
(e.g., Refs. 18 and 19). If subsequently the temperature is somewhat raised, 
the metastable fixed point and the unstable fixed point will approach each 
other (and eventually annihilate each other) and the system may find itself 
at the new temperature on one of the other flow lines, so that it will move 
to the stable fixed point. 

A P P E N D I X  A 

Assuming that the derivative of the free energy is factorized, one 
obtains an equation of motion of the form 

dn M 6 F =  
d t  = fin k ( n - n l ) ( n - n 2 ) ( n - n 3 )  (A1) 

with n~ < n 2 < n  3 this corresponds to a maximum at n2 between two 
minima at nl and n3, provided k > 0. The solution 

n o - - n 1 /  \no - -  n3] ~ \ n o - - n 2 ~  
(A2) 

where no is the value of n at t = 0. The values of z are given by 

n 2 - n 3  n3-n___ 1>0;  z 3 = n l - n 2 < 0  
r~ = A <0 ;  z 2 -  A A 

and 

A ~- F12?13 - -  t'123n2 -t- n~nl  -- n2n3 + n2n2 - -  n 2 g l l  

The dependence of n( t )  is given in Fig. 6. For  all n < n2 the system will end 
up at n~and for all n > n2 the system will end up at n 3. In both cases it will 
remain at that point. The result is obvious and there is no "overshoot," as 
is well known for a relaxation equation. The point n = n2 is singular. 

If the secondary minimum becomes an inflection point, i.e., if n2 = n3, 
the solution changes in character, since the decomposition in fractions 
changes. The result is 

z 2 In n - n 3 r 2 In n - -  n 2 n o - -  n + ~ = k ( t  - to) (A3) 
no - nl  n o - -  n 2 (n -- n2)(n o -- n2) 

where z = 1 / ( n 2 -  n l ) >  0. The result leads to the conclusion that the inflec- 
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Fig. 6. Time dependence of the long-range order parameter for the rate equations given by 
(A2). Insert: the free energy as a function of the order parameter n. 

tion point is metastable in an unusual way. For  n~ < n2 = n3 we have the 
following property of this instability. If  n = n2 + An, the system will relax to 
n3, but for n=n2-An, the system will relax to n 1. 
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